inequality$38933$ - определение. Что такое inequality$38933$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое inequality$38933$ - определение

PROBABILISTIC INEQUALITY OF PARTIAL SUMS OF INDEPENDENT RANDOM VARIABLES
Kolmogorov inequality; Kolgomorov's inequality; Kolgomorov's Inequality; Kolgomorov inequality

Poincaré inequality         
Poincare inequality; Poincaré's inequality; Poincare's inequality; Poincaré constant; Poincare constant; Poincaré–Wirtinger inequality; Poincaré-Wirtinger inequality; Poincare-Wirtinger inequality
In mathematics, the Poincaré inequality is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.
Grönwall's inequality         
THEOREM THAT GIVES BOUNDS ON INTEGRALS OF FUNCTIONS
Gronwall's lemma; Grönwall's lemma; Gronwall inequality; Gronwall lemma; Grönwall inequality; Grönwall lemma; Bellman-Gronwall inequality; Bellman-gronwall inequality; Groenwall's inequality; Groenwall inequality; Groenwall lemma; Groenwall's lemma; Gronwall–Bellman inequality; Gronwall's inequality; Gronwall-Bellman inequality
In mathematics, Grönwall's inequality (also called Grönwall's lemma or the Grönwall–Bellman inequality) allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form.
Samuelson's inequality         
INEQUALITY RELATING A SAMPLE MEAN AND STANDARD DEVIATION OF THAT SAMPLE
Laguerre–Samuelson inequality; Laguerre-Samuelson inequality; Laguerre-Samuelson Inequality; Samuelson Inequality; Samuelson inequality; Laguerre–Samuelson Inequality; Samuelson's Inequality; Samuelson–Laguerre Inequality; Samuelson–Laguerre inequality; Samuelson-Laguerre inequality; Samuelson-Laguerre Inequality
In statistics, Samuelson's inequality, named after the economist Paul Samuelson, also called the Laguerre–Samuelson inequality, after the mathematician Edmond Laguerre, states that every one of any collection x1, ..., xn, is within uncorrected sample standard deviations of their sample mean.

Википедия

Kolmogorov's inequality

In probability theory, Kolmogorov's inequality is a so-called "maximal inequality" that gives a bound on the probability that the partial sums of a finite collection of independent random variables exceed some specified bound.